jax.numpy.fft.fft#
- jax.numpy.fft.fft(a, n=None, axis=-1, norm=None)[source]#
Compute a one-dimensional discrete Fourier transform along a given axis.
JAX implementation of
numpy.fft.fft()
.- Parameters:
a (ArrayLike) – input array
n (int | None | None) – int. Specifies the dimension of the result along
axis
. If not specified, it will default to the dimension ofa
alongaxis
.axis (int) – int, default=-1. Specifies the axis along which the transform is computed. If not specified, the transform is computed along axis -1.
norm (str | None | None) – string. The normalization mode. “backward”, “ortho” and “forward” are supported.
- Returns:
An array containing the one-dimensional discrete Fourier transform of
a
.- Return type:
See also
jax.numpy.fft.ifft()
: Computes a one-dimensional inverse discrete Fourier transform.jax.numpy.fft.fftn()
: Computes a multidimensional discrete Fourier transform.jax.numpy.fft.ifftn()
: Computes a multidimensional inverse discrete Fourier transform.
Examples
jnp.fft.fft
computes the transform alongaxis -1
by default.>>> x = jnp.array([[1, 2, 4, 7], ... [5, 3, 1, 9]]) >>> jnp.fft.fft(x) Array([[14.+0.j, -3.+5.j, -4.+0.j, -3.-5.j], [18.+0.j, 4.+6.j, -6.+0.j, 4.-6.j]], dtype=complex64)
When
n=3
, dimension of the transform along axis -1 will be3
and dimension along other axes will be the same as that of input.>>> with jnp.printoptions(precision=2, suppress=True): ... print(jnp.fft.fft(x, n=3)) [[ 7.+0.j -2.+1.73j -2.-1.73j] [ 9.+0.j 3.-1.73j 3.+1.73j]]
When
n=3
andaxis=0
, dimension of the transform alongaxis 0
will be3
and dimension along other axes will be same as that of input.>>> with jnp.printoptions(precision=2, suppress=True): ... print(jnp.fft.fft(x, n=3, axis=0)) [[ 6. +0.j 5. +0.j 5. +0.j 16. +0.j ] [-1.5-4.33j 0.5-2.6j 3.5-0.87j 2.5-7.79j] [-1.5+4.33j 0.5+2.6j 3.5+0.87j 2.5+7.79j]]
jnp.fft.ifft
can be used to reconstructx
from the result ofjnp.fft.fft
.>>> x_fft = jnp.fft.fft(x) >>> jnp.allclose(x, jnp.fft.ifft(x_fft)) Array(True, dtype=bool)