jax.numpy.fft.rfft#
- jax.numpy.fft.rfft(a, n=None, axis=-1, norm=None)[source]#
Compute a one-dimensional discrete Fourier transform of a real-valued array.
JAX implementation of
numpy.fft.rfft()
.- Parameters:
a (ArrayLike) – real-valued input array.
n (int | None | None) – int. Specifies the effective dimension of the input along
axis
. If not specified, it will default to the dimension of input alongaxis
.axis (int) – int, default=-1. Specifies the axis along which the transform is computed. If not specified, the transform is computed along axis -1.
norm (str | None | None) – string. The normalization mode. “backward”, “ortho” and “forward” are supported.
- Returns:
An array containing the one-dimensional discrete Fourier transform of
a
. The dimension of the array alongaxis
is(n/2)+1
, ifn
is even and(n+1)/2
, ifn
is odd.- Return type:
See also
jax.numpy.fft.fft()
: Computes a one-dimensional discrete Fourier transform.jax.numpy.fft.irfft()
: Computes a one-dimensional inverse discrete Fourier transform for real input.jax.numpy.fft.rfftn()
: Computes a multidimensional discrete Fourier transform for real input.jax.numpy.fft.irfftn()
: Computes a multidimensional inverse discrete Fourier transform for real input.
Examples
jnp.fft.rfft
computes the transform alongaxis -1
by default.>>> x = jnp.array([[1, 3, 5], ... [2, 4, 6]]) >>> with jnp.printoptions(precision=2, suppress=True): ... jnp.fft.rfft(x) Array([[ 9.+0.j , -3.+1.73j], [12.+0.j , -3.+1.73j]], dtype=complex64)
When
n=5
, dimension of the transform along axis -1 will be(5+1)/2 =3
and dimension along other axes will be the same as that of input.>>> with jnp.printoptions(precision=2, suppress=True): ... jnp.fft.rfft(x, n=5) Array([[ 9. +0.j , -2.12-5.79j, 0.12+2.99j], [12. +0.j , -1.62-7.33j, 0.62+3.36j]], dtype=complex64)
When
n=4
andaxis=0
, dimension of the transform alongaxis 0
will be(4/2)+1 =3
and dimension along other axes will be same as that of input.>>> with jnp.printoptions(precision=2, suppress=True): ... jnp.fft.rfft(x, n=4, axis=0) Array([[ 3.+0.j, 7.+0.j, 11.+0.j], [ 1.-2.j, 3.-4.j, 5.-6.j], [-1.+0.j, -1.+0.j, -1.+0.j]], dtype=complex64)