jax.numpy.fft.rfft2#
- jax.numpy.fft.rfft2(a, s=None, axes=(-2, -1), norm=None)[source]#
Compute a two-dimensional discrete Fourier transform of a real-valued array.
JAX implementation of
numpy.fft.rfft2()
.- Parameters:
a (ArrayLike) – real-valued input array. Must have
a.ndim >= 2
.s (Shape | None | None) – optional length-2 sequence of integers. Specifies the effective size of the output along each specified axis. If not specified, it will default to the dimension of input along
axes
.axes (Sequence[int]) – optional length-2 sequence of integers, default=(-2,-1). Specifies the axes along which the transform is computed.
norm (str | None | None) – string, default=”backward”. The normalization mode. “backward”, “ortho” and “forward” are supported.
- Returns:
An array containing the two-dimensional discrete Fourier transform of
a
. The size of the output along the axisaxes[1]
is(s[1]/2)+1
, ifs[1]
is even and(s[1]+1)/2
, ifs[1]
is odd. The size of the output along the axisaxes[0]
iss[0]
.- Return type:
See also
jax.numpy.fft.rfft()
: Computes a one-dimensional discrete Fourier transform of real-valued array.jax.numpy.fft.rfftn()
: Computes a multidimensional discrete Fourier transform of real-valued array.jax.numpy.fft.irfft2()
: Computes a real-valued two-dimensional inverse discrete Fourier transform.
Examples
jnp.fft.rfft2
computes the transform along the last two axes by default.>>> x = jnp.array([[[1, 3, 5], ... [2, 4, 6]], ... [[7, 9, 11], ... [8, 10, 12]]]) >>> with jnp.printoptions(precision=2, suppress=True): ... jnp.fft.rfft2(x) Array([[[21.+0.j , -6.+3.46j], [-3.+0.j , 0.+0.j ]], [[57.+0.j , -6.+3.46j], [-3.+0.j , 0.+0.j ]]], dtype=complex64)
When
s=[2, 4]
, dimension of the transform alongaxis -2
will be2
, alongaxis -1
will be(4/2)+1) = 3
and dimension along other axes will be the same as that of input.>>> with jnp.printoptions(precision=2, suppress=True): ... jnp.fft.rfft2(x, s=[2, 4]) Array([[[21. +0.j, -8. -7.j, 7. +0.j], [-3. +0.j, 0. +1.j, -1. +0.j]], [[57. +0.j, -8.-19.j, 19. +0.j], [-3. +0.j, 0. +1.j, -1. +0.j]]], dtype=complex64)
When
s=[3, 5]
andaxes=(0, 1)
, shape of the transform alongaxis 0
will be3
, alongaxis 1
will be(5+1)/2 = 3
and dimension along other axes will be same as that of input.>>> with jnp.printoptions(precision=2, suppress=True): ... jnp.fft.rfft2(x, s=[3, 5], axes=(0, 1)) Array([[[ 18. +0.j , 26. +0.j , 34. +0.j ], [ 11.09 -9.51j, 16.33-13.31j, 21.56-17.12j], [ -0.09 -5.88j, 0.67 -8.23j, 1.44-10.58j]], [[ -4.5 -12.99j, -2.5 -16.45j, -0.5 -19.92j], [ -9.71 -6.3j , -10.05 -9.52j, -10.38-12.74j], [ -4.95 +0.72j, -5.78 -0.2j , -6.61 -1.12j]], [[ -4.5 +12.99j, -2.5 +16.45j, -0.5 +19.92j], [ 3.47+10.11j, 6.43+11.42j, 9.38+12.74j], [ 3.19 +1.63j, 4.4 +1.38j, 5.61 +1.12j]]], dtype=complex64)