jax.numpy.fft.ihfft#
- jax.numpy.fft.ihfft(a, n=None, axis=-1, norm=None)[source]#
Compute a 1-D inverse FFT of an array whose spectrum has Hermitian-symmetry.
JAX implementation of
numpy.fft.ihfft()
.- Parameters:
a (ArrayLike) – input array.
n (int | None | None) – optional, int. Specifies the effective dimension of the input along
axis
. If not specified, it will default to the dimension of input alongaxis
.axis (int) – optional, int, default=-1. Specifies the axis along which the transform is computed. If not specified, the transform is computed along axis -1.
norm (str | None | None) – optional, string. The normalization mode. “backward”, “ortho” and “forward” are supported. Default is “backward”.
- Returns:
An array containing one-dimensional discrete Fourier transform of
a
by exploiting its inherent Hermitian symmetry. The dimension of the array alongaxis
is(n/2)+1
, ifn
is even and(n+1)/2
, ifn
is odd.- Return type:
See also
jax.numpy.fft.hfft()
: Computes a one-dimensional FFT of an array whose spectrum has Hermitian symmetry.jax.numpy.fft.fft()
: Computes a one-dimensional discrete Fourier transform.jax.numpy.fft.rfft()
: Computes a one-dimensional discrete Fourier transform of a real-valued input.
Examples
>>> x = jnp.array([[1, 3, 5, 7], ... [2, 4, 6, 8]]) >>> jnp.fft.ihfft(x) Array([[ 4.+0.j, -1.-1.j, -1.-0.j], [ 5.+0.j, -1.-1.j, -1.-0.j]], dtype=complex64)
When
n=4
andaxis=0
, dimension of the transform alongaxis 0
will be(4/2)+1 =3
and dimension along other axes will be same as that of input.>>> jnp.fft.ihfft(x, n=4, axis=0) Array([[ 0.75+0.j , 1.75+0.j , 2.75+0.j , 3.75+0.j ], [ 0.25+0.5j, 0.75+1.j , 1.25+1.5j, 1.75+2.j ], [-0.25-0.j , -0.25-0.j , -0.25-0.j , -0.25-0.j ]], dtype=complex64)