jax.numpy.log#
- jax.numpy.log(x, /)[source]#
Calculate element-wise natural logarithm of the input.
JAX implementation of
numpy.log
.- Parameters:
x (ArrayLike) – input array or scalar.
- Returns:
An array containing the logarithm of each element in
x
, promotes to inexact dtype.- Return type:
See also
jax.numpy.exp()
: Calculates element-wise exponential of the input.jax.numpy.log2()
: Calculates base-2 logarithm of each element of input.jax.numpy.log1p()
: Calculates element-wise logarithm of one plus input.
Examples
jnp.log
andjnp.exp
are inverse functions of each other. Applyingjnp.log
on the result ofjnp.exp(x)
yields the original inputx
.>>> x = jnp.array([2, 3, 4, 5]) >>> jnp.log(jnp.exp(x)) Array([2., 3., 4., 5.], dtype=float32)
Using
jnp.log
we can demonstrate well-known properties of logarithms, such as \(log(a*b) = log(a)+log(b)\).>>> x1 = jnp.array([2, 1, 3, 1]) >>> x2 = jnp.array([1, 3, 2, 4]) >>> jnp.allclose(jnp.log(x1*x2), jnp.log(x1)+jnp.log(x2)) Array(True, dtype=bool)