jax.numpy.percentile#

jax.numpy.percentile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, interpolation=Deprecated)[source]#

Compute the percentile of the data along the specified axis.

JAX implementation of numpy.percentile().

Parameters:
  • a (ArrayLike) – N-dimensional array input.

  • q (ArrayLike) – scalar or 1-dimensional array specifying the desired quantiles. q should contain integer or floating point values between 0 and 100.

  • axis (int | tuple[int, ...] | None) – optional axis or tuple of axes along which to compute the quantile

  • out (None) – not implemented by JAX; will error if not None

  • overwrite_input (bool) – not implemented by JAX; will error if not False

  • method (str) – specify the interpolation method to use. Options are one of ["linear", "lower", "higher", "midpoint", "nearest"]. default is linear.

  • keepdims (bool) – if True, then the returned array will have the same number of dimensions as the input. Default is False.

  • interpolation (str | DeprecatedArg) – deprecated alias of the method argument. Will result in a DeprecationWarning if used.

Returns:

An array containing the specified percentiles along the specified axes.

Return type:

Array

See also

Examples

Computing the median and quartiles of a 1D array:

>>> x = jnp.array([0, 1, 2, 3, 4, 5, 6])
>>> q = jnp.array([25, 50, 75])
>>> jnp.percentile(x, q)
Array([1.5, 3. , 4.5], dtype=float32)

Computing the same percentiles with nearest rather than linear interpolation:

>>> jnp.percentile(x, q, method='nearest')
Array([1., 3., 4.], dtype=float32)