jax.numpy.nanquantile#
- jax.numpy.nanquantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, interpolation=Deprecated)[source]#
Compute the quantile of the data along the specified axis, ignoring NaNs.
JAX implementation of
numpy.nanquantile()
.- Parameters:
a (ArrayLike) – N-dimensional array input.
q (ArrayLike) – scalar or 1-dimensional array specifying the desired quantiles.
q
should contain floating-point values between0.0
and1.0
.axis (int | tuple[int, ...] | None) – optional axis or tuple of axes along which to compute the quantile
out (None) – not implemented by JAX; will error if not None
overwrite_input (bool) – not implemented by JAX; will error if not False
method (str) – specify the interpolation method to use. Options are one of
["linear", "lower", "higher", "midpoint", "nearest"]
. default islinear
.keepdims (bool) – if True, then the returned array will have the same number of dimensions as the input. Default is False.
interpolation (DeprecatedArg | str) – deprecated alias of the
method
argument. Will result in aDeprecationWarning
if used.
- Returns:
An array containing the specified quantiles along the specified axes.
- Return type:
See also
jax.numpy.quantile()
: compute the quantile without ignoring nansjax.numpy.nanpercentile()
: compute the percentile (0-100)
Examples
Computing the median and quartiles of a 1D array:
>>> x = jnp.array([0, 1, 2, jnp.nan, 3, 4, 5, 6]) >>> q = jnp.array([0.25, 0.5, 0.75])
Because of the NaN value,
jax.numpy.quantile()
returns all NaNs, whilenanquantile()
ignores them:>>> jnp.quantile(x, q) Array([nan, nan, nan], dtype=float32) >>> jnp.nanquantile(x, q) Array([1.5, 3. , 4.5], dtype=float32)