jax.numpy.std#
- jax.numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=None, correction=None)[source]#
Compute the standard deviation along a given axis.
JAX implementation of
numpy.std()
.- Parameters:
a (ArrayLike) – input array.
axis (Axis | None) – optional, int or sequence of ints, default=None. Axis along which the standard deviation is computed. If None, standard deviaiton is computed along all the axes.
dtype (DTypeLike | None | None) – The type of the output array. Default=None.
ddof (int) – int, default=0. Degrees of freedom. The divisor in the standard deviation computation is
N-ddof
,N
is number of elements along given axis.keepdims (bool) – bool, default=False. If true, reduced axes are left in the result with size 1.
where (ArrayLike | None | None) – optional, boolean array, default=None. The elements to be used in the standard deviation. Array should be broadcast compatible to the input.
correction (int | float | None | None) – int or float, default=None. Alternative name for
ddof
. Both ddof and correction can’t be provided simultaneously.out (None | None) – Unused by JAX.
- Returns:
An array of the standard deviation along the given axis.
- Return type:
See also
jax.numpy.var()
: Compute the variance of array elements over given axis.jax.numpy.mean()
: Compute the mean of array elements over a given axis.jax.numpy.nanvar()
: Compute the variance along a given axis, ignoring NaNs values.jax.numpy.nanstd()
: Computed the standard deviation of a given axis, ignoring NaN values.
Examples
By default,
jnp.std
computes the standard deviation along all axes.>>> x = jnp.array([[1, 3, 4, 2], ... [4, 2, 5, 3], ... [5, 4, 2, 3]]) >>> with jnp.printoptions(precision=2, suppress=True): ... jnp.std(x) Array(1.21, dtype=float32)
If
axis=0
, computes along axis 0.>>> with jnp.printoptions(precision=2, suppress=True): ... print(jnp.std(x, axis=0)) [1.7 0.82 1.25 0.47]
To preserve the dimensions of input, you can set
keepdims=True
.>>> with jnp.printoptions(precision=2, suppress=True): ... print(jnp.std(x, axis=0, keepdims=True)) [[1.7 0.82 1.25 0.47]]
If
ddof=1
:>>> with jnp.printoptions(precision=2, suppress=True): ... print(jnp.std(x, axis=0, keepdims=True, ddof=1)) [[2.08 1. 1.53 0.58]]
To include specific elements of the array to compute standard deviation, you can use
where
.>>> where = jnp.array([[1, 0, 1, 0], ... [0, 1, 0, 1], ... [1, 1, 1, 0]], dtype=bool) >>> jnp.std(x, axis=0, keepdims=True, where=where) Array([[2., 1., 1., 0.]], dtype=float32)